200 research outputs found

    Ultra-Thin Chip Package (UTCP) and stretchable circuit technologies for wearable ECG system

    Get PDF
    A comfortable, wearable wireless ECG monitoring system is proposed. The device is realized using the combination of two proprietary advanced technologies for electronic packaging and interconnection : the UTCP (Ultra-Thin Chip Package) technology and the SMI (Stretchable Mould Interconnect) technology for elastic and stretchable circuits. Introduction of these technologies results in small fully functional devices, exhibiting a significant increase in user comfort compared to devices fabricated with more conventional packaging and interconnection technologies

    3D Integration of ultra-thin functional devices inside standard multilayer flex laminates

    Get PDF
    Nowadays, more and more wearable electronic systems are being realized on flexible substrates. Main limiting factor for the mechanical flexibility of those wearable systems are typically the rigid components - especially the relatively large active components - mounted on top and bottom of the flex substrates. Integration of these active devices inside the flex multilayers will not only enable for a high degree of miniaturization but can also improve the total flexibility of the system. This paper now presents a technology for the 3D embedding of ultra-thin active components inside standard flex laminates. Active components are first thinned down to 20-25 mu m, and packaged as an Ultra-Thin Chip Pack-age (UTCP). These UTCP packages will serve as flexible interposer: all layers are so thin, that the whole package is even bendable. The limited total pack-age thickness of only 60 mu m makes them also suitable for lamination in between commercial flex panels, replacing for example the direct die integration. A fan-out metallization on the package facilitates easy testing before integration, solving the KGD issue, and can also relax the chip contact pitch, excluding the need for very precise placement and the use of expensive, fine-pitch flex substrates. The technology is successfully demonstrated for the 3D-integration of a Texas Instrument MSP430 low-power microcontroller, inside the conventional double sided flex laminate of a wireless ECG system. The microcontrollers are first thinned down and UTCP pack-aged These pack-ages are then laminated in between the large panels of the flex multilayer stack and finally connected to the different layers of the flex board by metallized through-hole interconnects. The thinning down, the UTCP pack-aging and the 3D-integration inside the commercial flex panels did not have any affect on the functionality of the TI microcontroller. Smaller SMD's were finally mounted on top and bottom of the integrated device

    Unsupervised Heart-rate Estimation in Wearables With Liquid States and A Probabilistic Readout

    Full text link
    Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine intelligent approach for heart-rate estimation from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects are considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices.Comment: 51 pages, 12 figures, 6 tables, 95 references. Under submission at Elsevier Neural Network

    Low power wireless sensor network for building monitoring

    Get PDF
    A wireless sensor network is proposed for monitoring buildings to assess earthquake damage. The sensor nodes use custom-developed capacitive MEMS strain and 3D acceleration sensors and a low power readout ASIC for a battery life of up to 12 years. The strain sensors are mounted at the base of the building to measure the settlement and plastic hinge activation of the building after an earthquake. They measure periodically or on-demand from the base station. The accelerometers are mounted at every floor of the building to measure the seismic response of the building during an earthquake. They record during an earthquake event using a combination of the local acceleration data and remote triggering from the base station based on the acceleration data from multiple sensors across the building. A low power network architecture was implemented over an 802.15.4 MAC in the 900MHz band. A custom patch antenna was designed in this frequency band to obtain robust links in real-world conditions

    Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording

    Get PDF
    Conventional gel electrodes are widely used for biopotential measurements, despite important drawbacks such as skin irritation, long set-up time and uncomfortable removal. Recently introduced dry electrodes with rigid metal pins overcome most of these problems; however, their rigidity causes discomfort and pain. This paper presents dry electrodes offering high user comfort, since they are fabricated from EPDM rubber containing various additives for optimum conductivity, flexibility and ease of fabrication. The electrode impedance is measured on phantoms and human skin. After optimization of the polymer composition, the skin-electrode impedance is only similar to 10 times larger than that of gel electrodes. Therefore, these electrodes are directly capable of recording strong biopotential signals such as ECG while for low-amplitude signals such as EEG, the electrodes need to be coupled with an active circuit. EEG recordings using active polymer electrodes connected to a clinical EEG system show very promising results: alpha waves can be clearly observed when subjects close their eyes, and correlation and coherence analyses reveal high similarity between dry and gel electrode signals. Moreover, all subjects reported that our polymer electrodes did not cause discomfort. Hence, the polymer-based dry electrodes are promising alternatives to either rigid dry electrodes or conventional gel electrodes

    An artificial iris ASIC with high voltage liquid crystal driver and 10nA light range detector and 40nA blink detector for LCD flicker removal

    Get PDF
    In a functional eye, the iris controls the pupil diameter to regulate the exposure of the retina. While iris deficiencies such as aniridia or leiomyoma can be mitigated with fixed or adaptive artificial irises [1] and adaptive transparency glasses exist to alleviate this situation, they do not mimic the normal functionality of the natural iris. To address this, a fully encapsulated, self-contained artificial iris embedded in a smart contact lens is proposed. A control ASIC is developed in 0.18 μm 16 V BCD TSMC with typ. 1.9 μw current consumption from 3 V supply voltage at office light condition

    Biocompatible packaging solutions for implantable electronic systems for medical applications

    Get PDF
    Our biocompatible packaging concept for implantable electronic systems combines biocompatibility, hermeticity and extreme miniaturization. In a first phase, all chips are encapsulated in order to realize a bi-directional diffusion barrier preventing body fluids to leach into the package causing corrosion, and preventing IC materials such as Cu to diffuse into the body, causing various adverse effects. Various clean room materials are tested with respect to their suitability as encapsulation material. In a second phase of the packaging process, all chips of the final device should be electrically connected, applying a biocompatible metallization scheme using eg. gold or platinum. Device assembly is the final packaging step, during which all system components will be interconnected. To provide sufficient mechanical support, all these components are embedded using a biocompatible elastomer such as PDMS

    A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS

    Get PDF
    In vivo recording of neural action-potential and local-field-potential signals requires the use of high-resolution penetrating probes. Several international initiatives to better understand the brain are driving technology efforts towards maximizing the number of recording sites while minimizing the neural probe dimensions. We designed and fabricated (0.13-μm SOI Al CMOS) a 384-channel configurable neural probe for large-scale in vivo recording of neural signals. Up to 966 selectable active electrodes were integrated along an implantable shank (70 μm wide, 10 mm long, 20 μm thick), achieving a crosstalk of −64.4 dB. The probe base (5 × 9 mm2) implements dual-band recording and a 1
    corecore